Fox. K. R., Oisin, R. K. \& Waring, M. J. (1982). Biochim. Biophys. Acta, 696, 315-322.
Gaif. E. F., Cevidifla, E., Reynolds, P. E., Richmond, M. H. \& Warinci, M. J. (1981). The Molecular Basis of Antibiotic Action. 2nd ed. Wiley: London.
Gao, X. \& Patil. D. J. (1988). Biochemistry, 27, 1744-1751.
Higithi, N., Kyodolit, Y., Shin, M. \& Inouyt., K. (1983). Int. J. Protein Res. 21. 541-545.
Hossain, M. B.. van der Helm, D.. Oishn, R. K.. Jonfs, P. G.. Shilidrick. G. M.. Egirt, E., Kfnnard, O.. Waring, M. J. \& Viswamitra. M. A. (1982). J. Am. Chem. Soc. 104, 3401-3408.
Kalman, J. R., Blakf, T. J., Williags, D. H., Felney, J. \& Roberts. G. C. K. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 1.313-1.321.

Katagiri, K., Yoshida, T. \& Sato, K. (1975). Antibiotic.s, Mechanism of Action of Antimicrobial and Antitumour Agents, edited by J. W Corcoral \& F. E. Hahi. Vol. I. pp. 234-251. Berlin. Heidelberg. New York: Springer.
Kabano, K.. Higichi, N. \& Kyogiokl: Y. (1977). Peptide Chemistry 1976, edited by A. NaKalma, English ed.. pp. 93-96. Peptide Research Foundation.
Kelife-Scheriein, W.. Mihailovic, M. Lj. \& Prelog. V. (1959). Heh: Chim. Acta, 42. 305-322.
Krogokl. Y., Higlichi, N., Watanabe., M. \& Kawano. K. (1981). Biopolymers, 20. 1959-1970.
Kyogokl, Y.. Yl., B. S., Aketsl. H., Watanable, M. \& Kabano. K. (1978). Biochem. Biophys. Res. Commun. 83, 172-179.

Lee, J. S. \& Waring. M. J. (1978a). Biochem. J. 173. 115-I28.
Lee. J. S. \& Warivg, M. J. (1978b). Biochem. J. 173, 129-144.
LePaci:, Y. (1987). J. Appl. Cryst. 20. 264-269.
Low. C. M. L., Fox. K. R. \& Warivi, M. J. (1986). Anti-Cancer Drug Des. 1. 149-160.
Low, C. M. L., Ol.sfi. R. K. \& Waring. M. J. (1984). FEBS Lett. 176. 414-420.
Martin, D. G., Mizsak, S. A.. Biles, C.. Sthehart, J. C., Baczynski, L. \& Mrulman, P. A. (1975). J. Antibiot. 28, 332-336.
Mclean, M. J. \& Waring, M. J. (1988). J. Mol. Recognit. 1. 1.38-151.
Mess, H. B., Blessing, J. A., Bakler, V. V., Barnhil.., D. R. \& Adel.Son, M. D. (1990). Am. J. (Clin. Oncol. 13, 299-301.

Muss, H. B., Blessing, J. A. \& Malfetaioo, J. (1990). Am. J. Clin. Oncol. 13, 191-193.
Olses, R. K. (1983). Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, edited by B. Wminstim, Vol. 7. pp. 1-33. New York: Marcel Dekker.
Qligley, G. J., Ughetto, G., van der Marel, G. A., van Boom, J. H., Wang. A. H. J. \& Rich, A. (1986). Science, 232, 1255-1258.
Sayters, E. W. \& Waring, M. J. (1993). Biochemistry, 32, 9094-9107.
Shtldrick, G. M. (1990). Acta Cryst. A46. 467-473.
Shel.drick, G. M. (1995). J. Appl. Cryst. In preparation.
Sheldrick, G. M., Gly, J. J., Kinnard, O., Rivera, V. \& Waringi, J. (1984). J. Chem. Soc. Perkin Trans. 2. pp. 1601-1605.

Ughfitto. G., Wavi, A. H. J.. Quiglfy, G. J., van der Marfi., G. A., vas: Boom, J. H. \& Rich. A. (1985). Nucleic Acids Res. 13, 230.5-2323.
Viswamitra. M. A., Khenvard, O., Crlse. W. B. T.. Egret, E.. Shitdrick, G. M.. Jones. P. G., Warivg, M. J., Wakelin, L. P. G. \& OLSin, R. K. (1981). Nalure (London), 289, 817-819.
Wakilin. L. P. G. (1986). Med. Res. Rev. 6. 275-340.
Wakein. L. P. G. \& Waring. M. J. (199()). Comprehensile Medicinal Chemistry, edited by P. G. Sammes, Vol. II, pp. 703-724. Oxford: Pergamon Press.
Wavg, A. H. J., Ughetto, G., Quigifey, G. J., Hakoshima, T.. vay der Marel., G. A., van Boom, J. H. \& Rich, A. (1984). Science. 225, 1115-1121.
Wavg, A. H. J., Ughetto, G., Quigley. G. J. \& Rich. A. (1986). J. Biomol. Struct. Dyn. 4, 319-342.
Waring. M. J. (1979). Antibiotics, Vol. V, Part 2, Mechanism of Action of Antieukaryotic and Antiviral Compounds, edited by F. E. HAHN, pp. 173-194. Heidelberg: Springer.
Warivg. M. J. (1990). Molecular Basis of Specificity in Nucleic Acid-l)rug Interactions, 23rd Jerusalem Symposium on Quantum Chemistry and Biochemistry, edited by B. Plilmali \& J. Jortiver. pp. 225-245. Dordrecht: Kluwer Academic Publishers.
Waring. M. J. (1993). Molecular Aspects of Anticancer Drug-DNA Interactions, edited by S. Neidle \& M. J. Warinci. Vol. 1, pp. 213-242. London: Macmillan.
Warivg. M. J. \& Wakelin, L. P. G. (1974). Nature (London), 252. 653-657.

Different Crystal Modifications of 3aß,4a-Dihydro-4ק,10-dimethyl-2-phenyl-1H,3H,5H-pyrrolo[3,4-b]carbazol-1,3-dione - Crystal Data and Theoretical Calculations

By Gudrun Fischer and Ulf Pindur
Institut für Pharmazie der Universität Mainz, Saarstrasse 21, 55099 Mainz, Germany

and Dieter Schollmeyier*

Institut für Organische Chemie der Universität Mainz, Saarstrasse 21, 55099 Mainz, Germany
(Received 23 September 1994; accepted 15 February 1995)

Abstract

Two crystal modifications of $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ were investigated. Crystal data: $M_{r}=342.34, \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA$, $T=298 \mathrm{~K} ; \quad$ crystal (I): monoclinic, $C 2 / c$, $a=14.9853$ (5), $\quad b=10.1607$ (5),$\quad c=23.729$ (2) \AA,

[^0]$\beta=108.680(4)^{\prime}, \quad V=3422.7(3) \AA^{3}, \quad Z=8$, $D_{x}=1.333 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=6.04 \mathrm{~cm}^{-1}, \quad F(000)=1440.0$, $R=0.069, w R=0.081$ for 2628 observed unique reflections; crystal (II): monoclinic, $C 2 / c$, $a=14.977$ (9) , $\quad b=10.177$ (1),$\quad c=23.663$ (2) \AA, $\beta=108.17(2)^{c}, \quad V=3426(2) \AA^{3}, \quad Z=8$, $D_{r}=1.333 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=6.04 \mathrm{~cm}^{-1}, \quad F(000)=1440.0$, $R=0.076, w R=0.084$ for 1984 observed unique
reflections. The hydrogen-bonded molecules of crystals (I) and (II) are differently placed in the (slightly but significantly different) unit cells. Calculations with the program packages SYBYL and CERIUS provide e.g. information about the strong hydrogen bonding and the differences between the unit cells.

Introduction

[b]-Annellated carbazoles are of general interest as cytostatically active compounds, while some derivatives of the 6 H -pyrido $4,3-b$]carbazole series, for example the ellipticines, are now undergoing clinical trials against several human tumors (Gribble, 1990). In the light of the medical necessity to develop more selective antineoplastic drugs, we have synthesized a variety of annellated carbazole derivatives from appropriately functionalized indoles by way of various pericyclic strategies (Pindur, 1994; Pindur \& Haber, 1993; Pindur, Kim, Rogge \& Massa, 1992; Dräger, Haber, Erfanian-Abdoust, Pindur \& Sattler, 1993) and studied their intercalative interactions towards the B-DNA by means of computer molecular modeling and biophysical tests (Pindur, Haber \& Sattler, 1993; Sattler, 1994). In several cases we have performed X-ray structural analyses of the $[b]$-annellated carbazoles and thus obtained reliable starting geometries (Dräger, Haber, Erfanian-Abdoust, Pindur \& Sattler, 1993; Schollmeyer, Fischer \& Pindur, 1993) for molecular mechanics and dynamics calculations on the drug-DNA intercalation complexes. In the present paper we report, in continuation of our studies, the X-ray structural analysis of the title carbazole derivative 3a $\beta, 4 \alpha$-dihydro- $4 \beta, 10$-dimethyl-2-phenyl-1 $\mathrm{H}, 3 \mathrm{H}, 5 \mathrm{H}$-pyrrolo [3,4-b]carbazol-1,3-dione (Fig. 1). The crystal structures (I) and (II) of the title compound were analysed and calculated by molecular mechanics methods in their different crystal packing arrangements. By means of the program package SYBYL, the unit cells were freely minimized without constraints, and with the help of the special options of the program package CERIUS only the positions of the molecules in the fixed cell were minimized. Thus, the modification of the molecules and the hydrogen bonds in the unit cells as well as the differences between the two crystal structures could be analysed.

Fig. 1. Molecular diagram of the title compound.

Experimental

The racemic title compound was synthesized, together with other isomeric compounds, in our laboratories starting from N-phenylmaleimide and 1,4-dimethylpyrano $[3,4$-b]indol-3-one (Erfanian-Abdoust \& Pindur, 1989) via Diels-Alder reaction, CO_{2} extrusion and stabilization by formal antara-[1,5]H shift.

Crystals of (I) and (II) were grown from their solution in acetone with a surrounding acetone/ $\mathrm{H}_{2} \mathrm{O}$ (I: 1:1, II: 2:1) atmosphere. Weissenberg photographs indicated the monoclinic space group $C 2 / c$, which was confirmed by the structure analysis. Because of the limited amount of substance available, no powder diffraction analyses to differentiate (I) and (II) were undertaken. The data collection and refinement parameters are summarized in Table 1. The data were corrected for Lorentz and polarization factors; no absorption correction was applied. The direct methods option from SHELXS86 (Sheldrick, 1985) provided the locations for all non-H atoms. Nearly all H atoms were found by differenceFourier syntheses, as also were the H_{NS} atoms, which are involved in the hydrogen bonding. Final refinements converged for (I) to $R=0.069$ and for (II) to $R=0.076$. Positions and equivalent displacement parameters for non-H atoms are presented in Table 2. Bond lengths and selected bond and torsion angles are listed in Table 3.* A molecular diagram is shown in Fig. 1, the numbering scheme is given in Fig. 2 (PLUTO; Motherwell \& Clegg, 1978). Figs. $3(a)$ and (b) depict, viewed in the direction of the b axis, the linear arrangement of the hydrogenbonded molecules and their different placements in each unit cell.

Molecular mechanics (MM) calculations were performed using the SYBYL5.5 (Tripos Associates Inc., 1992) molecular modeling software package installed on a microVAX 3000, employing SYBYL Tripos force-field MAXIMIN2. Cells ($\mathrm{I}_{x}, \mathrm{II}_{x}$) with the eight molecules of (I) and (II) in their symmetry-equivalent positions were built up, starting with the geometry from the X-ray analysis. Care was taken to ensure that as many atoms as possible were inside the cell. Using Gasteiger-Hückel charges (Gasteiger \& Marsili, 1980) for the electrostatic term $E_{\text {elec }}$, the MM energy $E_{101} \dagger$ was obtained by minimization with the termination option r.m.s. GRADIENT [Δ r.m.s. ($\mathrm{kcal} \mathrm{mol}^{-1} \AA^{-1}$) between two iterations]. The molecular modeling software package CERIUS was installed on an IBM RS 6000 . The cells I_{x} and II_{x} were minimized using the CRYSTAL PACKER and $Q_{\text {eq }}$ charges (Rappé \& Goddard III, 1991). The GRADIENT termination criterion ($\Delta 0.042 \mathrm{~kJ} \mathrm{~mol}^{-1}$) was used.

[^1]Table 1. Crystal data, data collection parameters. solution and refinement

solution and refinement				x	1	$=$	18		
(I) (II)			N2	0.1105 (1)	0.2954 (2)) 0.61168 (9)	0.0516 (7)		
			C3	0.0504 (2)	0.3911 (3)) 0.6221 (1)	0.0564 (10)		
Chemical formula $\quad \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \quad \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$			C3A	-0.0246 (2)	0.4142 (4)) $0.5639(1)$	0.069 (1)		
Molecular weight	342.34	342.34	C4	-0.1186 (2)	0.4591 (3)) 0.5611 (1)	0.0570 (10)		
Crystal color Pale yellow Pale yellow			C4A	-0.1853 (2)	0.4307 (2)) 0.5011 (1)	0.0458 (8)		
Crystal size (mm)	$0.45 \times 0.42 \times 0.20 \quad 0.10 \times 0.18 \times 0.22$		N5	-0.2757 (1)	0.4779 (2)) 0.47960 (9)	0.0561 (8)		
Absorption $\mu\left(\mathrm{cm}^{-1}\right)$	$6.04) 6.04$		C5A	-0.3195 (2)	0.4235 (3)) 0.4245 (1)	0.0513 (9)		
Absorption correction	None None		C6	-0.4112 (2)	0.4115 (3)) 0.3861 (1)	$0.0666^{(1)}$		
Crystal system	Monoclinic Monoclinic		C7	-0.4370 (2)	0.3752 (4)) $0.3328(1)$	0.070 (1)		
Space group	C2/c C2/c		C8	-0.3748 (2)	0.2951 (3)) $0.3170(1)$	0.068 (1)		
$a(\AA)$	14.9853 (5) 14.977 (9)		C9	-0.2828 (2)	0.2771 (3)) 0.3546 (1)	0.0574 (10)		
b (\AA)	10.1607 (5) 10.177 (1)		C9A	-0.2547 (2)	0.3409 (2)) 0.4098 (1)	0.0474 (8)		
$c(\AA)$	23.729 (2) 23.663 (2)		C9B	-0.1694 (2)	0.3462 (2)) $0.4602(1)$	0.0434 (8)		
$\beta\left({ }^{\circ}\right.$)	108.680 (4) $\quad 108.17$ (2)		C10	-0.0820 (2)	0.2727 (2)) 0.4741 (1)	0.0463 (8)		
$V\left(\AA^{3}\right)$	3422.7 (3) 3426 (2)		Cl 10 A	-0.0151 (2)	0.3031 (3)) 0.5260 (1)	0.0508 (9)		
Z	8	8	Cll	0.1963 (2)	0.2558 (3)) 0.6562 (1)	0.0498 (8)		
$F(000)$	1440.0	1440.0	C12	0.2076 (2)	0.1290 (3)) 0.6772 (1)	0.0578 (10)		
No of reflections for cell parameters		66	C13	0.2902 (2)	0.0928 (3)) 0.7206 (1)	0.068 (1)		
		C14	0.3615 (2)	0.1835 (4)) 0.7422 (1)	0.071 (1)			
Range for cell parameters (${ }^{\circ}$)	60< $<8<70$		$61<\theta<70$	C15	0.3495 (2)	0.3092 (4)) 0.7219 (2)	0.081 (1)	
Temperature (K)	298	298	C16	0.2672 (2)	0.3483 (3)) 0.6782 (1)	0.068 (1)		
$D_{x}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.333	1.333	C17	-0.0720 (2)	0.1666 (3)	(3) 0.4329 (2)	0.075 (1)		
			C18	. 1293 (2)	5884 (4)) 0.5880 (2)	0.079 (1)		
Data collection									
Diffractometer	Enraf-Nonius CAD-4	Enraf-Nonjus CAD-4	(II)						
Radiation	$\mathrm{Cu} K \boldsymbol{\alpha}$	$\mathrm{Cu} K \alpha$	C1	0.2702 (3)	0.5109 (4)) 0.4453 (2)	0.057 (2)		
Wavelength (\AA)	1.5418	1.5418	N2	0.3472 (3)	0.4567 (4)	(0.3881 (2)	0.061 (1)		
Scan type	$\omega / 2 \theta$	$\omega / 2 \theta$	C3	0.1772 (3)	0.3608 (5)) 0.3775 (2)	0.069 (2)		
$\theta_{\text {max }}\left({ }^{\circ}\right.$)	70.0	70.0	C3A	0.1584 (4)	$0.3408(6)$	(6) $0.4351(2)$	0.092 (2)		
Rangle of h, k, l	$-19 \rightarrow 0$ 0 0 18		C4A	0.0695 0.0623	$0.2897(5)$ 0.3176 (4)	(5) 0.4389 (2)	0.065 (2)		
	$0 \rightarrow 13$ 0 \rightarrow 12		N5 -	0.0623 -0.0049	$0.3176(4)$ $0.2696(4)$	(4) 0.4981 (2)	0.053 (2)		
	$-29 \rightarrow 29 \quad-28 \rightarrow 28$		N5	-0.0049 (3)	0.2696 (4)) $0.5199(2)$	0.066 (2)		
No. of measured reflections	3575		C5A	0.0058 (3)	0.3230 (5)) 0.5754 (2)	0.061 (2)		
No. of independent reflections 3025 2743			C6	-0.0486 (4)	0.3039 (5)) $0.6135(2)$	0.079 (2)		
$R_{\text {int }}$	$0.061 \quad 0.069$		C7	-0.0214 (4)	0.3698 (6)) 0.6668 (2)	0.084 (2)		
No. of observed reflections	2628 1984		C8	0.0571 (4)	0.4507 (6)) 0.6826 (2)	0.078 (2)		
	$[F / \sigma(F)>4.0]$	$[F / \sigma(F)>4.0]$	C9	0.1095 (3)	0.4705 (5)) 0.6444 (2)	0.067 (2)		
No. of standard reflections Intensity variation (\%)	3 every 4000 s	3 every 4000 s	C9A	0.0844 (3)	0.4070 (4)) 0.5900 (2)	0.055 (2)		
	5	5	C9B	0.1192 (3)	0.4036 (4)) 0.5394 (2)	0.053 (2)		
			Cl 10	0.1917 (3)	0.4767 (4)) 0.5258 (2)	0.053 (2)		
Data reduction			C10A	0.2071 (3)	0.4487 (4)) $0.4737(2)$	0.059 (2)		
Corrections	Lorentz and polarization correction Correction of the variation of the intensity of the standard reflections with cubic spline function		C11	0.2892 (3)	0.4957 (5)) 0.3434 (2)	0.062 (2)		
			C12	0.2802 (3)	0.6234 (5)	(0.3231 (2)	0.067 (2)		
			C 13	0.3212 (4)	0.6582 (5)) 0.2800 (2)	0.080 (2)		
			C14	0.3687 (4)	0.5680 (6)	(6) 0.2580 (2)	0.084 (2)		
Solution and refinement			C15	0.3767 (4)	0.4413 (6)) 0.2785 (3)	0.096 (3)		
Solution Direct methods (SHELXS86; Sheldrick, 1986)	Direct methods (SHELXS86; Sheldrick, 1986)		${ }^{\mathrm{Cl} 16}$	0.3383 (4)	0.4024 (5)) $0.3219(2)$	0.078 (2)		
			O1	0.1418 (3)	0.3084 (4)) 0.3306 (2)	0.097 (2)		
Refinement Ful	Full-matrix refinement (SHELX76; Sheldrick, 1976)		O 2	0.3295 (2)	0.5934 (3)) $0.4633(1)$	0.073 (1)		
Atomic scattering factors Extinction parameter	SHELX76 (Sheldrick, 1976)		C 17	0.2439 (4)	0.5814 (5)) 0.5669 (2)	0.083 (2)		
No. of parameters used	255 SHELX76 (Sh	236	C18	0.0338 (4)	0.1621 (5)) $0.4120(2)$	0.089 (2)		
Treatment of H -atoms	Riding with grouped isotropic parameters	Riding with fixed isotropic parameters							
Extinction parameter	isotropic parameters0.0030 (6)		Table 3. Bond distances (\AA), selected bond and torsion						
R	$0.069 \quad 0.076$		angles (${ }^{\circ}$)						
ωR	$0.081 \quad 0.084$								
S	4.81	3.74	(1)	(II)					
Weighting	$1 /\left[\sigma^{2}\left(F_{o}\right)+0.00087 F_{o}^{2}\right]$	$1 /\left[\sigma^{2}\left(F_{o}\right)+0.00084 F_{o}^{2}\right]$	O1-C3	1.195 (4) C		3-O1	1.196 (6)		
$(\Delta / \sigma)_{\text {max }}{ }^{\text {d }}$	0.001	0.001	$\mathrm{O} 2-\mathrm{Cl}$		1.213 (3) Cl	$1-\mathrm{O} 2$	$1.200(6)$		
$\Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}{ }^{-3}\right.$)	0.523	0.498	$\mathrm{C} 1-\mathrm{N} 2$		1.401 (3) Cl	1-N2	1.400 (6)		
$\Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	-0.351	-0.283	$\mathrm{C} 1-\mathrm{Cl} 10 \mathrm{~A}$		1.461 (4) Cl	- Cloa	1.464 (6)		
			N2-C3		1.400 (4) N2	2-C3	1.398 (6)		
			$\mathrm{N} 2-\mathrm{Cl} 1$		1.435 (3) N2	N2-C11	1.445 (6)		
Table 2. Fractional	atomic coordinates and equivalent		C3-C3A		1.494 (4) C3	3-C3A	1.489 (7)		
					C3A--C4		1.462 (4) C3	$3 A-\mathrm{C} 4$	1.457 (7)
isotropic thermal parameters (A^{2})			C3A--C10A		1.479 (4) C3	$3 A-\mathrm{C} 10 A$	1.469 (7)		
			C4-C4A		1.482 (4) C4	4-C4A	1.466 (7)		
$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}, \mathbf{a}$.			C4-C18		1.492 (5) C4	4-C18	1.471 (7)		
x	(1/3) $\sum_{i} \sum_{j} U_{i j} a_{i} a_{j} a_{i} a_{j}$.		C4A--N5		1.372 (3) C4	4 A -N5	1.358 (6)		
	y	$z \quad U_{\text {eq }}$	$\mathrm{C} 4 A-\mathrm{C} 9 \mathrm{~B}$		1.372 (4) C4	$4 A-\mathrm{C} 9 \mathrm{~B}$	1.388 (6)		
(I) ${ }^{\text {a }}$			N5-C5A		1.378 (3) NS	N5-C5A	1.384 (6)		
010.0617 (1)	0.4432 (3) 0.66	908 (9) 0.0825 (9)	C5A--C6		1.396 (4) C5	5A-C6	1.404 (7)		
$\mathrm{O} 2 \quad 0.1174$ (1)	0.1556 (2) 0.53	697 (9) 0.0659 (8)	C5A-C9A		1.409 (4) C5	5A-C9A	1.408 (6)		
C1 0.0756 (2)	0.2396 (3) 0.55	49 (1) 0.0502 (9)	C6-C7		1.374 (4) C6	6-C7	1.373 (7)		

Table 2 (cont.)

Table 3. Bond distances (\AA), selected bond and torsion angles (${ }^{\circ}$)

Table 3 (cont.)

(I)	(II)		
C7-C8	1.378 (5)	$\mathrm{C} 7-\mathrm{C} 8 \quad 1$	1.387 (8)
C8-C9	1.393 (4)	$\mathrm{C} 8-\mathrm{C} 9$ - 1	1.383 (7)
C9-C9A	1.399 (4)	C9-C9A 1	1.385 (6)
C9A-C9B	1.446 (3)	C9A-C9B	1.448 (6)
$\mathrm{C} 98-\mathrm{Cl0}$	1.451 (3)	C98-C10	1.433 (6)
C10-Cl0.4	1.351 (4)	C10-C10A	1.352 (6)
$\mathrm{Cl0}-\mathrm{C} 17$	1.494 (4)	C10-C17	1.490)(7)
$\mathrm{C} 11-\mathrm{C} 12$	1.372 (4)	C11-C12	1.377 (7)
C11-Cl6	1.389 (4)	C11-C16	1.390 (7)
$\mathrm{C} 12-\mathrm{Cl} 3$	1.382 (4)	C12-C13	1.391 (7)
$\mathrm{Cl} 3-\mathrm{Cl} 4$	1.379 (5)	C13-C14	1.360 (8)
C14-C15	1.356 (5)	C14-C15	1.370 (9)
C15-C16	1.391 (5)	C15-C16	1.382 (8)
$\mathrm{N} 2-\mathrm{Cl}-\mathrm{O}_{2}$	123.1 (2)	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{N} 2$	123.4 (3)
$\mathrm{C10A}-\mathrm{Cl}-\mathrm{N} 2$	106.1 (2)	$\mathrm{C1OA}-\mathrm{Cl}-\mathrm{N} 2$	106.0 (3)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cl}$	112.8 (2)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cl}$	113.1 (3)
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{Cl}$	124.4 (2)	$\mathrm{Cl1}-\mathrm{N} 2-\mathrm{Cl}$	124.6 (3)
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{O} 1$	124.5 (2)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 2$	124.6 (4)
$\mathrm{C} 3.4-\mathrm{C} 3-\mathrm{N} 2$	106.4 (2)	$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{N} 2$	106.1 (4)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 3$ A	109.1 (2)	C4A-C4-C3A	109.3 (4)
$\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4$	125.7 (2)	$\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 4 A-\mathrm{C} 4$	125.6 (3)
C10-C9B-C4A	120.7 (2)	$\mathrm{C} 10-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 4 A$	120.7 (3)
C5A-NS-C4A	109.1 (2)	C5A-N5-C4A	109.8 (3)
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{N} 2-\mathrm{C} 3$	179.5 (3)	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{N} 2-\mathrm{C} 3$	178.9 (5)
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{C} 10.4-\mathrm{C} 10$	9.3 (4)	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{C10A}-\mathrm{ClO}$	7.8 (6)
$\mathrm{Cl}-\mathrm{N} 2-\mathrm{Cl1}-\mathrm{Cl2}$	-60.2 (3)	$\mathrm{Cl}-\mathrm{N} 2-\mathrm{Cl1}-\mathrm{Cl} 2$	-60.8(5)
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	152.5 (3)	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	155.9 (5)
$\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C10A}-\mathrm{Cl}$	-14.4 (3)	$\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{Cl}$	-12.8(4)
C10A-C3A-C4-C4A	-28.2 (3)	C10A-C3A-C4-C4A	-24.1 (5)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{Cl} 10 \mathrm{~A}-\mathrm{Cl}$	-154.1 (3)	$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{ClOA}-\mathrm{Cl}$	-158.2 (5)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 5$	-169.0 (3)	$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 5$	-170.9 (5)
$\mathrm{C} 4 A-\mathrm{C} 9 \mathrm{~B}-\mathrm{C10}-\mathrm{Cl} 7$	170.7 (3)	$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C10-C17}$	171.9 (5)
C18-C4-C4A-C9B	155.1 (3)	$\mathrm{C} 18-\mathrm{C} 4-\mathrm{C} 4 A-\mathrm{C} 9$ B	154.9 (5)
C4A - N5-C5A - C 6	179.4 (3)	C4A-N5-C5A-C6	178.4 (5)
C9-C9A-C9B-C10	-7.5 (4)	$\mathrm{C} 9-\mathrm{C9} A-\mathrm{C9B}-\mathrm{ClO}$	-5.6 (7)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10-\mathrm{Cl} 10 \mathrm{~A}$	-6.8(3)	$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 9 \mathrm{~B}-\mathrm{Cl} 0-\mathrm{C10A}$	A -5.9 (5)
$\mathrm{Ol}-\mathrm{C} 3-\mathrm{ClOA}-\mathrm{Cl} 3$	-29.3(4)	$\mathrm{Ol}-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	-24.2 (7)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{Cl} 10 \mathrm{~A}-\mathrm{C10}$	26.2 (3)	$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C10A}-\mathrm{C10}$	22.2 (6)
$\mathrm{C} 16-\mathrm{Cl1}-\mathrm{C12-C13}$	-().1 (4)	C16-C11-C12-C13	0.2 (6)

Results and discussion

Bond distances and angles, and torsion angles of the crystal structures (I) and (II) show standard values. A comparison of (I) with (II) reveals some statistical deviations (standard deviation 3δ on mean value) for the unit-cell parameters b, c and β and for the torsion angles in the region $\mathrm{C} 10 \mathrm{~A} / \mathrm{C} 1 / \mathrm{N} 2 / \mathrm{C} 3 / \mathrm{Ol} / \mathrm{C} 3 \mathrm{~A} / \mathrm{C} 4 / \mathrm{C} 18 /$ C4A. The molecule in the crystal structure (I) is somewhat more twisted in the five-membered amide ring/six-membered ring system than in (II), e.g.

Fig. 2. PLUTO (Motherwell, 1978) plot of (I). The IUPAC numbering scheme is used for (I) and (II).
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$ for (I) $-29.3(4)^{\circ}$ against (II) $-24.2(7)^{-1}$ as the highest deviation found, or $\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 1$ for (I) -154.1 (3) ${ }^{\circ}$ against (II) $158.2(5)^{\circ}$.

The single bonds $\mathrm{C} 9 B-\mathrm{C} 10$ of the diene partial structure $\mathrm{C} 4 A-\mathrm{C} 9 B-\mathrm{C} 10-\mathrm{C} 10 A$ in (I) with 1.451 (3) \AA and in (II) with 1.433 (6) \AA are typical for a single bond in a conjugated system of the butadiene type, as found for some 3 -vinyl- $1 H$-indoles [1.41-1.47 \AA (Fischer \& Pindur, 1995)].

The H atoms bonded on the $s p^{3}$ hybridized atoms C3A and C 4 are in the s-trans conformation; $\mathrm{H}_{\mathrm{C} 4}$ could be localized in both cases, the position of $\mathrm{H}_{\mathrm{C} 3 \mathrm{~A}}$ is sterically unequivocally determined. The hydrogen bond lengths, bond angles and the partial contributions $E_{\text {tot(Hbond) }}$ of one $\mathrm{O}_{2} \cdots \mathrm{H}_{5 \mathrm{~N}}$ bond to the calculated E_{tot} are summarized in Table 4; they differ for the cells minimized by SYBYL because the program takes no account of the symmetry relations.
Although the separation of N5 \cdots O2 with $3.01 \AA$ in the crystal structures is a little too long for a strong hydrogen bond (Testa, 1983), the respective angles are found to be 172.35 (I) and 177.34° (II); angles close to 180° are characteristic for strong hydrogen bonds (Brown, 1976). In crystal structures, stabilizing electrostatic and van der Waals (vdW) effects, charge distribution, crystal packing forces and the type of hydrogen bonds (e.g. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ or $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$) influence the strength and the geometric parameters of hydrogen bonds. MM minimizations with SYBYL and CERIUS both keep the strong hydrogen bondings [see $E_{\text {tot(H bond) }}$], but modify their geometry (Table 4).

(a)

(b)

Fig. 3. View of the crystal structure of (a) (1) and (b) (II). The linear alignment of neighbouring molecules by hydrogen bonds is indicated by thin lines.

Table 4. Distances (\AA) angles (") and contributions to $E_{\mathrm{tot}}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ of the hydrogen bonds in the X-ray and in the calculated structures

	Crystal structure unminimized cell		SYBYL minimized cell		CERIUS minimized cell	
	I_{5}	II_{r}	$1_{\text {SYBY }}$	$\mathrm{II}_{\text {SYBYL }}$	$\mathrm{I}_{\text {Cerlus }}$	$\mathrm{II}_{\text {CERM }}$ S
H5- $\mathrm{H}_{5 \mathrm{~N}}$	0.995 (3)	0.984 (5)	1.04/1.04	$1.04 / 1.04$	0.995	0.984
O2 $\cdots \mathrm{H}_{5} \mathrm{~S}$	2.025 (3)	2.031 (5)	1.77/1.69	1.68/1.72	2.269	2.315
N5..()2	3.014 (3)	3.014 (5)	2.80/2.66	2.66/2.61	3.249	3.255
$\mathrm{N} 55-\mathrm{H}_{5 \mathrm{~N}}-\mathrm{O} 2$	172.4 (2)	177.3 (3)	168.06/153.24	156.30/141.60	168.24	159.57
SYBYL						
$E_{\text {touth mand }}$	-30.98	-30.77	-39.44/-41.95	-42.20)-41.28		
CERIUS:						
$E_{\text {wouct bund) }}$	-23.78	-24.49			-21.85	-22.57

Besides changes in the intramolecular geometry a full minimization with SYBYL also leads to changes in the cell arrangements. The E_{tol} values of the created cells differ before minimization by ca 27.0% ($\mathrm{II}_{\text {SYBYL }}$ $3736.3 \mathrm{~kJ} \mathrm{~mol}^{-1}>\mathrm{I}_{\text {SYYYL }} 2728.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$) and after minimization by about $13.6 \%\left(\mathrm{I}_{\text {SYBYL }} 453.8 \mathrm{~kJ} \mathrm{~mol}^{-1}>\right.$ $\mathrm{II}_{\text {SYBYL }} 391.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$), mainly because of the different energy decrease by van der Waals contacts in the minimized cells $\quad\left[E_{\mathrm{vdW}}\left(\mathrm{I}_{\text {SYBYL }}\right)>E_{\mathrm{vdW}}\left(\mathrm{II}_{\text {SYBYL }}\right): \quad c a\right.$ $66.99 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~J}$, because E_{tot} is strongly dependent on the created cell arrangement. The tendency is apparent that both created cells $I_{S Y B Y L}$ and $I_{S Y B Y L}$ converge to the same energy but they, as well as the nonminimized cells I_{x} and I_{x}, seem to be energetically different.

Energy differences in crystal packing should, therefore, be calculated using periodic boundary conditions. Lattice parameters and the molecular geometry of the molecule were held fixed and only their orientations in the unit cell were refined with respect to the space-group symmetry. Calculations with the CERIUS crystal packer indicate that the crystal packings of I_{x} and II_{x} are energetically equivalent: I_{r} is with an $E_{t o t}{ }^{*}$ of -1375.87 kJ per cell energetically favored over II_{x} with -1320.52 kJ per cell by only 4%, the minimized cell $I_{\text {CERU/ }}$ with -1398.43 kJ per cell is energetically favored over $\mathrm{II}_{\text {c:RRUS }}$ with -1367.66 kJ per cell by $\mathrm{ca} 2.2 \%$.

The results of the present calculations reveal the similar highly stablizing contributions of the hydrogen bonds in both crystal structures, although the great variability of hydrogen bonds (Brown, 1976) cannot be described with only one MM parameter set - we agree to the referee's comment. CERIUS indicates further that both cells are approximately energetically equivalent. Since the crystals were grown under nearly identical conditions and in view of these calculations, the probability for obtaining crystals (I) or (II) seems to be practically the same.

Furthermore, two continuing statements should be pointed out due to these results: First, that powder pattern should be made from the hole batch of a compound and

[^2]be compared with the calculated powder pattern, and second, that minimizing the energy of built-up cells (CERIUS!) combined with the measurement of the density of crystals is not sufficient to make an absolute prediction of crystal structures.

We wish to thank the Deutsche Forschungsgemeinschaft, Bonn, for financial support, and Dr VogtMartin from the Institute of Physical Chemistry, University of Mainz, for using CERIUS.

References

Brown, I. D. (1976). Acta Cryst A32, 24-31.
CERIUS3.2 Molecular Simulations. The Quorum. Barnwell Road. Cambridge.
Dräger, M., Haber, M., Erfanian-Abdoust, H., Pinder, U. \& Sattler, K. (1993). Monatsch. Chem. 124, 559-576.
Erfanian-Abdoust, H. \& Pindur, U. (1989). Iteterocycles, 29. 17091719.

Fischer, G. \& Pindur, U. (1995). Monatsh. Chem. 126, 303-317.
(iasteigile, J. \& Marsili, M. (1980). Tetrahedron, 36. 3219-3222.
Gribble, G. W. (1990). The Alkaloids, edited A. Brossi. Vol. 39, Ch. 7. I.endon: Academic Press.

Pinditr, U. (1994). Cyeloadditions with indole derivatives. In Advanced Nitrogen Heterocycles, edited by C. J. Moody. Vol. 1. pp. 122-170. Greenwich: JAl Press.
Pinidit, U. \& Habir, M. (1993). J. Prakt. Chem./Chern.-7tg. 335, 1216.

Pinditr, U., Haber, M. \& Sattler, K. (1993). J. Chein. Educ. 20, $263-$ 272.

Pindifr. U., Kim, M.-H., Rocigie, M. \& Massa. W. (1992). J. Org. Chem. 57.910-915.
Motherwell, W. D. S. \& Cleq;i, W. (1978). PluTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge. England.
Rappí, A. K. \& Goddard III. W. A. (1991). J. Phis. Chem. 95. 33583363.

Sattifer, K. (1994). Dissertation. Universität Mainz, Germany.
Scholimeyir, D., Fischer, G. \& Pinitir. U. (1993). Acta ('rist. C49. 2177-2179.
Sheldrick, G. M. (1976). SHELX76. Program for Cristal Structure Determination. Univ. of Cambridge. England.
Shildorick. G. M. (1985). ShELXS86. Program for the Solution of Cristal Structures. U'niv. of Göttingen. Germany.
Tripos Associates, Inc. (1992). SYBYI.5.5. Tripos Associates. Inc.. St. Louis, USA.
Testa, B. (1983). Grundlagen der Organischen Stereochemie. Weinheim: Derfield Beach, Florida: Basel: Verlag Chemic.

[^0]: * Author for correspondence.

[^1]: * Lists of structure factors, isotropic displacement parameters, H -atom coordinates and complete geometry have been deposited with the IUCr (Reference: PA0302). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

 $$
 +E_{\text {tot }}(S Y B Y L)=E_{\text {bond surecthng }}+E_{\text {angle bending }}+E_{\text {torswonal }}+
 $$

 $$
 E_{\text {oul-of-plane bending }}+E_{\mathrm{clec}}+E_{\mathrm{vdw}} .
 $$

[^2]: ${ }^{*} E_{\text {tot }}$ (special (ERIUS crystal packer option) $=E_{\text {citec }}+E_{\text {idw }}+$ $E_{\text {Hhand }}$.

